Green Coordinates

Tobias G. Pfeiffer
Freie Universität Berlin
AG Mathematical Geometry Processing
November 6, 2008

Introduction
Barycentric Coordinates
Problems with Existing Methods
Green Coordinates
About
Idea
Derivation
Extension to the Outside of the Cage
Motivation
Problems When Extending Coordinates
Solution
Implementation

Contents

Introduction
Barycentric Coordinates Problems with Existing Methods

Green Coordinates

About
Idea
Derivation
Extension to the Outside of the Cage
Motivation
Problems When Extending Coordinates
Solution
Implementation

What are Barycentric Coordinates

- Idea: Spatial coordinates of a point are represented as linear combination of the vertices of an ambient cage.
- $x \in \mathbb{R}^{d}$ point, $v_{i} \in \mathbb{R}^{d}$ vertices of a cage P; find $\varphi_{i}(x)$ so that:

$$
x=\sum_{i \in \mathbb{I}_{\mathbb{V}}} \varphi_{i}(x) \cdot v_{i}
$$

- Motivation:

1. Interpolate function values given on the boundary:

$$
f(x):=\sum_{i} \varphi_{i}(x) \cdot f\left(v_{i}\right)
$$

2. Move the cage vertices and see how the internal points move along:

$$
F\left(\cdot, P^{\prime}\right): x \mapsto x^{\prime}:=\sum_{i} \varphi_{i}(x) \cdot v_{i}^{\prime}
$$

We look only at (2.) here; special case of (1.), with f being the transformation applied to P.

Problems with Existing Methods

- Linear combinations of cage vertices must lead to affine-invariant transformations, not shape-preserving.
- Shape-preserving
- Close to rotations with isotropic scale
- Infinitesimal circles are mapped to infinitesimal ellipsoids with bounded axis ratio (quasi-conformal)
- Affine-invariant
- Affine transformation applied to cage results in same transformation applied to geometry \Rightarrow problems with shearing and anisotropic scale
- Especially: Changes in only one direction do not affect the other directions

Problems with Existing Methods

Original, affine-invariant transformation

Solution: Green Coordinates

Contents

Introduction

Barycentric Coordinates

Problems with Existing Methods

Green Coordinates

About
Idea
Derivation

Extension to the Outside of the Cage Motivation Problems When Extending Coordinates Solution

Implementation

Facts about Green Coordinates

- Paper from Y. Lipman, D. Levin, D. Cohen-Or, presented on SIGGRAPH 2008
- Can be used with piecewise smooth boundaries in any dimension
- Cages must not be necessarily simply connected
- Yields conformal transformations in 2D, quasi-conformal transformations in higher dimensions

Idea of Green Coordinates

- Take not only vertices of cage, but also face orientation (= normals) into account.
- P a cage, $v_{i} \in \mathbb{R}^{d}$ vertices $\left(i \in \mathbb{I}_{\mathbb{V}}\right), t_{j}$ faces with normals $n_{j} \in \mathbb{R}^{d}$ $\left(j \in I_{\pi}\right)$

$$
x=\sum_{i \in /_{\mathbb{V}}} \varphi_{i}(x) \cdot v_{i}+\sum_{j \in /_{\mathbb{\pi}}} \psi_{j}(x) \cdot n_{j}
$$

- With cage change $P \mapsto P^{\prime}$, transformation is then given by

$$
F\left(\cdot, P^{\prime}\right): x \mapsto x^{\prime}=\sum_{i \in /_{\mathbb{V}}} \varphi_{i}(x) \cdot v_{i}^{\prime}+\sum_{j \in /_{\mathbb{T}}} \psi_{j}(x) \cdot s_{j} \cdot n_{j}^{\prime}
$$

- s_{j} scaling factors, chosen appropriately to obtain desired properties

Example Transformation

Original, transformation induced from Green Coordinates

Derivation of Green Coordinates

Theorem (Green's Third Identity)

Let $\Omega \subset \mathbb{R}^{d}$ with a smooth boundary, G_{a} a fundamental solution of the Laplace equation (i.e. $\Delta G_{a}(x)=\delta_{a, x}$). If $u: \Omega \rightarrow \mathbb{R}$ is twice continuously differentiable, then for all $a \in \Omega$, the following equality holds:

$$
u(a)=\int_{\partial \Omega}\left(u(x) \cdot \frac{\partial G_{a}}{\partial n}(x)-G_{a}(x) \cdot \frac{\partial u}{\partial n}(x)\right) d \sigma_{x}+\underbrace{\int_{\Omega} G_{a}(x) \cdot \Delta u(x) d x}_{\text {vanishes if } u \text { harmonic }}
$$

Those functions G_{a} in \mathbb{R}^{d} have the form

$$
G_{a}(x)= \begin{cases}\frac{1}{2 \pi} \log \|a-x\| & d=2 \\ \frac{1}{(2-d) \omega_{d}}\|a-x\|^{2-d} & d \geq 3\end{cases}
$$

(with ω_{d} volume of the d-unit sphere).

Derivation of Green Coordinates

Treat coordinate functions $u=(x, y, z): \Omega \rightarrow \mathbb{R}^{3}$ as special harmonic functions (in each component):

$$
u(a)=a=\int_{\partial \Omega}\left(x \cdot \frac{\partial G_{a}}{\partial n}(x)-G_{a}(x) \cdot n(x)\right) d \sigma_{x}
$$

Remark

Let $d=2 \Rightarrow G_{a}(x)=\frac{1}{2 \pi} \log \|a-x\|$. Compare the above representation to Cauchy's integral formula:

$$
a=\frac{1}{2 \pi i} \int_{\partial D} \frac{1}{z-a} \cdot z d \sigma_{z}
$$

In 2D, Green and Complex Coordinates (Gotsman) are equivalent!

Derivation of Green Coordinates

- normal n_{j} constant on each triangle t_{j}
- for $x \in t_{j}, x=\sum_{v_{k} \in \mathbb{V}\left(t_{j}\right)} \Gamma_{k}(x) \cdot v_{k}$ (real barycentric coordinates; Γ_{k} piecewise linear hat function with $\Gamma_{k}\left(v_{i}\right)=\delta_{i k}$)
Rearrange and for $x=\sum_{i \in \mathbb{I}_{\mathbb{V}}} \varphi_{i}(x) \cdot v_{i}+\sum_{j \in I_{\mathbb{T}}} \psi_{j}(x) \cdot n_{j}$, one obtains:

$$
\begin{array}{ll}
\varphi_{i}(a)=\int_{x \in \operatorname{AdjFaces}\left(v_{i}\right)} \Gamma_{i}(x) \cdot \frac{\partial G_{a}}{\partial n}(x) d \sigma_{x} & i \in I_{\mathbb{V}} \\
\psi_{j}(a)=-\int_{x \in t_{j}} G_{a}(x) d \sigma_{x} & j \in I_{\mathbb{T}}
\end{array}
$$

Desired Properties

For the transformation

$$
F\left(x, P^{\prime}\right)=\sum_{i \in /_{\mathbb{V}}} \varphi_{i}(x) \cdot v_{i}^{\prime}+\sum_{j \in \mathbb{I}_{\pi}} \psi_{j}(x) \cdot s_{j} \cdot n_{j}^{\prime}
$$

the scaling factors s_{j} (depending on source and target cage!) are still to be defined to ensure the following properties:

1. Linear reproduction: $x=F(x, P)$
2. Translation invariance: $F(x, P+v)=x+v$
3. Rotation and scale invariance: $F(x, T P)=T x$ for T an affine transformation consisting of rotation with isotropic scale
4. Shape preservation: $x \mapsto F\left(x, P^{\prime}\right)$ is conformal $(d=2)$ or quasi-conformal ($d \geq 3$)
5. Smoothness: ϕ_{i}, ψ_{j} should be smooth

Scaling Factors

- In 2D, choose $s_{j}=\left\|t_{j}^{\prime}\right\| /\left\|t_{j}\right\|$.
- In 3D, choose

$$
\frac{1}{\sqrt{8} \operatorname{area}\left(t_{j}\right)} \sqrt{\left\|u^{\prime}\right\|^{2}\|v\|^{2}-2\left(u^{\prime} \cdot v^{\prime}\right)(u \cdot v)+\left\|v^{\prime}\right\|^{2}\|u\|^{2}}
$$

where $u, v, u^{\prime}, v^{\prime}$ span the old and new triangles t_{j}, t_{j}^{\prime}.

- If $t_{j}=t_{j}^{\prime}$, then $s_{j}=1$. (necessary for linear reproduction)
- Conformality for $d=2$ is proven in Technical Report yet to be published.
- Quasi-Conformality for $d \geq 3$:
- distortion measured by quotient of singular values of DF
- experimentally found distortion bounded by constant ≤ 6 (Mean-Value Coordinates and Harmonic Coordinates yield unbounded distortion proportional to cage distortion)

Some Images I

Deformations using Green, Mean-Value, Harmonic Coordinates

Some Images II

Deformation using a non-simply connected cage

Contents

Introduction
Barycentric Coordinates
Problems with Existing Methods
Green Coordinates
About
Idea
Derivation
Extension to the Outside of the Cage
Motivation
Problems When Extending Coordinates
Solution
Implementation

Partial Cages: Motivation

- Sometimes only part of a geometry should be deformed.
- Large cages are harder to construct and increase computation time.
- Requirements:
- Smooth transition where geometry crosses "exit face".
- Diminishing influence of cage movement outside the cage.

Problems

- Green's Identity only holds inside the cage, i.e. for $x \in P^{\text {in }}$.
- Coordinate functions:
- Normal weights $\psi_{j}(a)=-\int_{x \in t_{j}} G_{a}(x) d \sigma_{x}$ are smooth across $\partial \Omega$:

- Vertex weights $\varphi_{i}(a)=\int_{x \in \operatorname{AdjFaces}\left(v_{i}\right)} \Gamma_{i}(x) \cdot \frac{\partial G_{a}}{\partial n}(x) d \sigma_{x}$ are discontinuous across adjacent faces of v_{i} :

- $F(x, P)=0$ if $x \in P^{\text {ext }}$
- Goal: Find analytic (complex-analytic in $d=2$, real-analytic in $d \geq 3$) continuations of φ_{i} across a fixed face t_{r}.
- Let $I_{r} \subset I_{\mathbb{V}}$ be the index set of vertices spanning t_{r}.
- Define $\tilde{\psi}_{r}$ and $\tilde{\varphi}_{i}\left(i \in I_{r}\right)$ such that:
- linear reproduction holds:

$$
\sum_{i \in I_{r}} \tilde{\varphi}_{i}(x) v_{i}+\tilde{\psi}_{r}(x) n_{r}=x-\sum_{i \in I_{\mathbb{V}} \backslash I_{r}} \varphi_{i}(x) v_{i}-\sum_{j \neq r} \psi_{j}(x) n_{j}
$$

- translation invariance holds:

$$
\sum_{i \in I_{r}} \tilde{\varphi}_{i}(x)=1-\sum_{i \in l_{\mathbb{V}} \backslash l_{r}} \varphi_{i}(x)
$$

This yields an (invertible!) linear equation system that can be used to compute $\tilde{\varphi}_{i}(x)$ and $\tilde{\psi}_{j}(x)$.

- $\tilde{\varphi}_{i}(x)=\varphi_{i}(x)$ and $\tilde{\psi}_{j}(x)=\psi_{j}(x)$ if $x \in P^{\text {in }}$ (by construction)

Properties of Extension

Theorem

The mapping

$$
\tilde{F}\left(x, P^{\prime}\right)=\sum_{i \in I_{\mathbb{V}}} \tilde{\varphi}_{i}(x) \cdot v_{i}^{\prime}+\sum_{j \in /_{\mathbb{T}}} \tilde{\psi}_{j}(x) \cdot s_{j} \cdot n_{j}^{\prime}
$$

- in the 2D case is the unique complex-analytic extension of the mapping $F\left(\cdot, P^{\prime}\right)$ through the edge t_{r}.
- In 3D, $\tilde{\varphi}_{i}$ and $\tilde{\psi}_{j}$ are the unique real-analytic extensions of φ_{i}, ψ_{j} through the face t_{r}.

In some cases, it is possible to define an extension for multiple "exit faces".

Some Images

Deformation using a partial cage

Contents

Introduction

Barycentric Coordinates
Problems with Existing Methods
Green Coordinates
About
Idea
Derivation
Extension to the Outside of the Cage
Motivation
Problems When Extending Coordinates Solution

Implementation

Pseudocodes

Input: cage $P=(\mathbb{V}, \mathbb{T})$, set of points $\Lambda=\{\boldsymbol{\eta}\}$
Output: $2 D \mathrm{GC} \phi_{i}(\boldsymbol{\eta}), \psi_{j}(\boldsymbol{\eta}), i \in I_{\mathrm{v}}, j \in I_{\mathrm{T}}, \boldsymbol{\eta} \in \Lambda$
/* Initialization
set all $\phi_{i}=0$ and $\psi_{j}=0$
/* Coordinate computation
foreach edoe $j \in I_{T}$ with vertices $v_{j_{1}}, v_{j_{2}}$
$\boldsymbol{a}:=\boldsymbol{v}_{j_{2}}-\boldsymbol{v}_{j_{1}} \quad ; \quad \boldsymbol{b}:=\boldsymbol{v}_{j_{1}}-\eta$
$Q:=\boldsymbol{a} \cdot \boldsymbol{a} ; \quad ;:=\boldsymbol{b} \cdot \boldsymbol{b} ; \quad R:=2 \boldsymbol{a} \cdot \boldsymbol{b}$
$B A:=\boldsymbol{b} \cdot \| \boldsymbol{a} \mid \boldsymbol{n}\left(t_{j}\right) \quad ; \quad S R T:=\sqrt{4 S Q-R^{2}}$
$L 0:=\log (S) \quad ; \quad L 1:=\log (S+Q+R)$
$A 0:=\frac{\tan ^{-1}(R / S R T)}{S R T}$
$A 1:=\frac{\tan ^{-1}((2 Q+R) / S R T)}{S R T}$
$A 10:=A 1-A 0 \quad ; \quad L 10:=L 1-L 0$
$\psi_{j}(\eta):=$
$-\mid \boldsymbol{a} \| /(4 \pi)\left[\left(4 S-\frac{R^{2}}{Q}\right) A 10+\frac{R}{2 Q} L 10+L 1-2\right]$
$\phi_{j_{2}}(\eta):=\phi_{j_{2}}(\boldsymbol{\eta})-\frac{B A}{2 \pi}\left[\frac{L 10}{2 Q}-A 10 \frac{R}{Q}\right]$
$\phi_{j_{1}}(\eta):=\phi_{j_{1}}(\boldsymbol{\eta})+\frac{B A}{2 \pi}\left[\frac{L 10}{2 Q}-A 10\left(2+\frac{R}{Q}\right)\right]$
end
end

Input: cage $P=(\mathbb{V}, \mathbb{T})$, set of points $\Lambda=\{\boldsymbol{\eta}\}$
Output: $3 D \operatorname{GC} \phi_{i}(\boldsymbol{\eta}), \psi_{j}(\boldsymbol{\eta}), i \in I_{\mathrm{V}}, j \in I_{\mathrm{T}}, \boldsymbol{\eta} \in \Lambda$
/* Initialization
set all $\phi_{i}=0$ and $\psi_{j}=0$
/+ Coordinate computation
foreach point $\boldsymbol{\eta} \in \Lambda$ do
foreach face $j \in I_{\mathrm{T}}$ with vertices $\boldsymbol{v}_{j_{1}}, \boldsymbol{v}_{j_{2}}, \boldsymbol{v}_{j_{3}}$ do

$$
\text { foreach } \ell=1,2,3 \text { do }
$$

$$
L \boldsymbol{v}_{j_{\varepsilon}}:=\boldsymbol{v}_{j_{\ell}}-\eta
$$

$$
\boldsymbol{p}:=\left(\boldsymbol{v}_{j_{1}} \cdot \boldsymbol{n}\left(t_{j}\right)\right) \boldsymbol{n}\left(t_{j}\right)
$$

$$
\text { foreach } \ell=1,2,3 \text { do }
$$

$s_{\ell}:=$
$\operatorname{sign}\left(\left(\left(v_{j_{\ell}}-p\right) \times\left(v_{j_{\ell+1}}-p\right)\right) \cdot n\left(t_{j}\right)\right)$
$I_{\ell}:=\operatorname{GCTriInt}\left(\boldsymbol{p}, \boldsymbol{v}_{j_{\ell}}, \boldsymbol{v}_{j_{\ell+1}}, 0\right)$
$I_{\ell}:=\operatorname{GCTriInt}\left(0, \boldsymbol{v}_{j_{\ell+1}}, \boldsymbol{v}_{j_{\ell}}, 0\right)$
$\boldsymbol{q}_{\ell}:=\boldsymbol{v}_{j_{\ell+1}} \times \boldsymbol{v}_{j_{\ell}}$
$\boldsymbol{N}_{\boldsymbol{\ell}}:=\boldsymbol{q}_{\boldsymbol{\ell}} /\left\|\boldsymbol{q}_{\boldsymbol{\ell}}\right\|$
$I:=-\left|\sum_{k=1}^{3} s_{k} I_{k}\right|$ $\boldsymbol{w}:=\boldsymbol{n}\left(t_{j}\right) I+\sum_{k=1}^{3} \boldsymbol{N}_{k} I I_{k}$ if $\|\boldsymbol{w}\|>\epsilon$ then
foreach $\boldsymbol{\ell}=1,2,3$ do

$$
\phi_{j_{\ell}}(\eta):=\phi_{j_{\ell}}(\eta)+\frac{N_{\ell+1} \cdot w}{N_{\ell+1} \cdot v_{j_{\ell}}}
$$

end
end
Procedure GCTriInt $\left(p, \boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{\eta}\right)$
$\alpha:=\cos ^{-1}\left(\frac{\left(v_{2}-v_{1}\right) \cdot\left(p-v_{1}\right)}{\| v_{2}-v_{1}| | p-v_{1} \mid}\right)$
$\beta:=\cos ^{-1}\left(\frac{\left(v_{1}-p\right) \cdot\left(v_{2}-p\right)}{\left|v_{1}-p\right| \| v_{2}-p \mid}\right)$
$\lambda:=\left\|\boldsymbol{p}-\boldsymbol{v}_{1}\right\|^{2} \sin (\alpha)^{2}$
$c:=\|p-\eta\|^{2}$
foreach $\theta=\pi-\alpha, \pi-\alpha-\beta$ do
$S:=\sin (\theta) \quad ; \quad C:=\cos (\theta)$
$I_{\theta}:=\frac{-\operatorname{sign}(S)}{2}\left[2 \sqrt{c} \tan ^{-1}\left(\frac{\sqrt{c} C}{\sqrt{\lambda+S^{2} c}}\right)+\right.$
$\left.\sqrt{\lambda} \log \left(\frac{2 \sqrt{\lambda} S^{2}}{(1-C)^{2}}\left(1-\frac{20 C}{c(1+C)+\lambda+\sqrt{\lambda^{2}+\lambda c S^{2}}}\right)\right)\right]$
return $\frac{-1}{4 \pi}\left|I_{\pi-\alpha}-I_{\pi-\alpha-\beta}-\sqrt{c} \beta\right|$

Pseudocode for 2D and 3D given in the paper

- N number of geometry vertices, V number of cage vertices, T number of cage faces
- Preprocessing:
- compute coordinates, $O(N \cdot(V+T))$ (but with large constants!)
- On every cage deformation:
- compute new normals and scaling factors, $O(T)$
- compute new positions, $O(N \cdot(V+T))$ (but can be done fast as simple matrix multiplication)
- can be done more efficient: consider only changed vertices / triangles

For Further Reading

(R. Lipman, D. Levin, D. Cohen-Or Green Coordinates. ACM SIGGRAPH 2008
E. Y. Lipman, D. Levin

On the derivation of green coordinates. Technical Report. unpublished

