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Abstract

What does it mean to “go straight” on a sphere? What is the shortest distance between two points
in a space other than the ordinary Euclidean Rn? These two questions, and many more, are of geo-
metrical nature, and are treated within the framework of differential geometry. The key object that is
used is the manifold, which we will define in this talk. We will start from the broadest definition of a
topological manifold, and end at the Riemannian one. Then we will give a basic idea and definitions
of what a geodesic on a Riemannian manifold is, together with some examples.

1 Topological and Smooth Manifolds

The most general definition of a manifold:

Definition 1 (Topological Manifold). A topological space M is called a topological n-manifold if:

• M is Hausdorff (i.e. every pair p, q can be separated by two disjoint open sets) and second countable (i.e.
there exists a countable basis to the topology of M).

• M is locally Euclidean, that is, for every p ∈ M there exists an open set U ⊂ M with p ∈ U and an open
set V ⊂ Rn such that there exists a homeomorphism ϕ : U → V.

A pair (U, ϕ), where p ∈ U ⊂ M and ϕ is a homeomorphism, is called a coordinate chart. Here U is called
coordinate domain and ϕ is the coordinate map. For every q ∈ U the vector ϕ(q) = (x1(q), . . . , xn(q)) ∈ Rn

is the local coordinates of q in U. The collection

A = {(Uα, ϕα)}α∈I

is called an atlas if M =
⋃

α∈I Uα.
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Figure 1: An example of a manifold with a chart (U, ϕ).

Given a topological manifold M, and two charts (U, ϕ), (V, ψ), such that U ∩ V 6= ∅. If the transition
map

ψ ◦ ϕ−1 : ϕ(U ∩V)→ ψ(U ∩V)

(cf. figure 2) is a diffeomorphism, (U, ϕ) and (V, ψ) are said to be smoothly compatible.

M

VU

ϕ ψ−1

Figure 2: An example of a transition map ϕ ◦ ψ−1.

The atlasA is called smooth atlas if every two charts are smoothly compatible. Finally, we can define the
notion of smooth manifold:

Definition 2 (Smooth Manifold). A topological n-manifold M is called a smooth manifold, if there exists a
smooth atlas A of M.

The above is derived from the first chapter of [Lee].

F Example: Sphere The sphere S2 = {x ∈ R3 | ‖x‖ = 1} ⊂ R3 is a smooth 2-manifold.

• Since a subspace of a Hausdorff space is Hausdorff (refer to Theorem 31.2(a) in [Munkres,
p.196]), then S2 is also Hausdorff.

• As R3 is second countable (take as a basis the set of all products (a1, b1) × (a2, b2) ×
(a3, b3) where ai, bi’s are rational), then S2 is also second countable as a subspace. See
Theorem 30.2 in [Munkres, p. 191].

• Consider the coordinate domains of the form

U+
i = {(x1, x2, x3) ∈ S2 | xi > 0}

U−i = {(x1, x2, x3) ∈ S2 | xi < 0}
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Figure 3: A unit sphere

That is, half-spheres in each direction. For each domain, let the homeomorphism be for
example:

ϕ±1 (x1, x2, x3) = ±(x2, x3)

(ϕ±1 )−1(x2, x3) = (±
√

1− x2
2 − x2

3, x2, x3)

and so on for every i. As the domains U±i covers the sphere we have an atlas. This atlas
is also smooth. For example:

ϕ+
2 ◦ (ϕ−1 )−1(x, y) = ϕ+

2 (−
√

1− x2 − y2, x, y) = (−
√

1− x2 − y2, y).

Thus, S2 is a smooth manifold. For more details, refer to examples 1.2 and 1.20 in [Lee].

F Example: Discrete Planar Curves For a fixed n ∈ N, we consider the set of discrete
curves in R2 with n nodes:

M := {c : [0, 1]→ R2 | c continuous, c|[ k−1
n−1 , k

n−1 ] linear for k = 1, . . . , n− 1}

as a subset of C([0, 1], R2) (all curves in R2).

Figure 4: A discrete curve with n = 6 nodes.

By equipping M with the norm ‖·‖∞ (the standard norm for C([0, 1], R2)), we induce a
metric d( f , g) := ‖ f − g‖∞ and thus a topology on M.

• M is Hausdorff: Every metric space is Hausdorff.

• M is second countable: M is a topological subspace of C([0, 1], R2). From the Weier-
straß approximation theorem, we know that the space of polynomials is dense in C([0, 1], R2).
Since the space of polynomials is second countable, so is M.

• M is locally Euclidean: Actually, M is globally Euclidean, because it can be directly
identified with R2n by specifying all the coordinates of the nodes of the curve:

ϕ : c 7→
(
c(0), c( 1

n−1 ), . . . , c(1)
)
∈ R2n
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The inverse mapping is

ϕ−1 : (x1, y1, . . . , xn, yn) 7→ c, c : t 7→
(
1− γ(t)

)(xk
yk

)
+ γ(t)

(
xk+1
yk+1

)
for t ∈ [ k−1

n−1 , k
n−1 ],

where γ(t) := (n − 1)t − k + 1 is the affine map from [ k−1
n−1 , k

n−1 ] to [0, 1], i.e. c is the
linear interpolant of the given nodes.

2 Riemannian Manifolds

2.1 Tangent Space

In real analysis the derivative is a linear approximation of the function, so is the tangent vector of a
planar or space curve. For a surface element, as the sphere, which is embedded in some Rn, we can
define tangent vectors and tangent space at a point in the following way:

F Example: Sphere Let p ∈ S2 be an arbitrary point and consider two smooth curves
c1, c2 : (−ε, ε)→ S2. We say that c1 and c2 are equivalent if:

• c1(0) = c2(0) = p

• c′1(0) = c′2(0)

This is clearly an equivalence relation on the set of all curves passing through p. We call
each equivalence class a tangent vector of S2 at p, and denote it by Xp. The set of all tangent
vectors of S2 at p is called the tangent space of S2 at p.

In this case, the tangent space is nothing but a copy of R2.

Note that we can compute c′(0) in this straightforward way only because of the embedding
in R3, where we can use the tools of real analysis. In the general case of a smooth manifold,
we can easily define a curve on M, and the derivative is defined as well, but not as easily.

We will now define a tangent vector to an arbitrary smooth manifold.

Definition 3 (Tangent Vector and Space). Given a smooth manifold M and a point p, then a tangent vector
of M at p is an equivalence class of differentiable curves

c : (−ε, ε)→ M

where c(0) = p and c1 ∼ c2 ⇐⇒ (ϕ ◦ c1)′(0) = (ϕ ◦ c2)′(0), i.e. the images of the curves under ϕ have the
same tangent vector in Rn. The tangent space of M at p is the set of all tangent vectors at p.

Remark 1 (Different definitions of the tangent vectors). The definition given above is of geometrical
nature. It is common to define the notion of the tangent vector in another two possible ways:
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• Algebraic definition

• Physical definition

The algebraic definition is regarded as a directional derivative of scalar functions defined on the manifold
in the following sense. If c : I → M is a smooth curve, then its tangent is:

c′(t0) ∈ Tc(t0)M, t0 ∈ I.

Now, given a smooth scalar function f : M → R, then the tangent vector c′(t0) can be thought of as a
directional derivation of f at the point c(t0).

It can be shown that the tangent space is a vector space of dimension n: For every v ∈ Rn, a curve
γ : (−ε, ε) → Rn can be easily constructed such that γ′(0) = v and then the equivalence class of
c := ϕ−1 ◦ γ under ∼ is a tangent vector corresponding to v. Using this construction, it can be seen that
indeed Tp M ∼= Rn.

F Example: Discrete Planar Curves Let p ∈ M, i.e. p is a discrete curve in R2 with n nodes.
A curve c : (−ε, ε)→ M through p is a set of planar curves with c(0) = p.

Figure 5: A curve c in M through p (which is itself a discrete curve in R2), shown in selected timesteps
in (−ε, ε).

Now we can’t simply compute c′(0), since we cannot compute c(h)−c(0)
h , as there is no addi-

tion/subtraction defined on M. However, we can look at the image of c under ϕ, which is
an ordinary curve in R2n and can compute (ϕ ◦ c)′(0) ∈ R2n.

Figure 6: The arrows represent the components of (ϕ ◦ c)′(0) in R2n.

A tangent vector at p as defined above is the equivalence class of all curves on M through p
whose image under ϕ has the same tangent vector in R2n, i.e. the tangent space is basically
R2n itself.
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Figure 7: Two curves in M with the same tangent vectors when “pulled down” to R2n, i.e. belonging to
the same equivalence class.

2.2 Riemannian Manifold

Definition 4 (Riemannian Metric). Let M be a smooth manifold. A Riemannian metric g on M is a differen-
tiable map p 7→ gp : Tp M× Tp M→ R such that gp is

• bilinear: gp(aX1 + bX2, Y) = agp(X1, Y) + bgp(X2, Y) (same in the second argument)

• symmetric: gp(X, Y) = gp(Y, X)

• positive definite: gp(X, X) > 0 for X 6= 0.

gp should be thought of as a scalar product on Tp M; that is, a way to measure lengths and angles in the
tangent space.

F Example: Sphere The Riemannian metric gp is inherited from the embedding space’s
scalar product, that is the Euclidean scalar product in R3:

gp : TpS2 × TpS2 → R

(Xp, Yp) 7→ gp(Xp, Yp) =
〈

Xp, Yp
〉

F Example: Discrete Planar Curves A Riemannian metric has to be defined on some rep-
resentation of Tp M. If we identify Tp M with R2n, then the simplest possible Riemannian
metric surely is the scalar product inherited from R2n:

gp : Tp M× Tp M→ R, (X, Y) 7→ 〈X, Y〉

For a different representation of that same tangent space, in terms of tangent vectors being
equivalence classes of curves on M, for two tangent vectors [c1] and [c2], we pick some
representatives c∗1 and c∗2 of those equivalence classes and get the same metric through

gp : Tp M× Tp M→ R, ([c1], [c2]) 7→
〈
(ϕ ◦ c∗1)

′(0), (ϕ ◦ c∗2)
′(0)

〉
Definition 5 (Riemannian Manifold). The pair (M, g) is called a Riemannian manifold if M is a smooth
manifold and g is a Riemannian metric.

A Riemannian metric is not what is known as “metric” from the theory of metric spaces, but can be used
to define a distance function with similar properties. As for the Euclidean scalar product, we can denote∣∣Xp

∣∣
g :=

√
gp(Xp, Xp) as the length of the tangent vector Xp and then talk about length of curves on

manifolds:

Definition 6 (Length of a curve on a manifold). Let c : [a, b]→ M be a piecewise smooth curve on M. Then

Lg(c) :=
∫ b

a

∣∣c′(t)
∣∣
g dt (1)
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The length of a curve is independent of its parameterization, cf. [Lee, p. 275].

F Example: Sphere Let S2 be equipped with the standard metric from above and c :
[0, 2π]→ S2, t 7→ (cos t, sin t, 0) (i.e. c is the equator of S2). Then

Lg(c) =
∫ 2π

0

∣∣c′(t)
∣∣
g dt =

∫ 2π

0
1 dt = 2π,

which is exactly what we would expect for the equator of the unit sphere.

F Example: Discrete Planar Curves A curve in M is a set of discrete curves in R2. For
n = 6, let p, q ∈ M with p(t) = (t, 0) (blue) and q the piecewise linear interpolant of the
nodes

(
t, sin(2πt)

)
(red).

Then one possible curve connecting p and q is the curve c : [0, 1] → M where c(s) is the
piecewise linear interpolant of the nodes

(
t, s sin(2πt)

)
(black):

Then (ϕ ◦ c)(s) =
(
0, s sin(0), 1

5 , s sin(2π 1
5 ), 2

5 , s sin(2π 2
5 ), . . . , 1, s sin(2π)

)
∈ R12

and (ϕ ◦ c)′(s) =
(
0, sin(0), 0, sin(2π 1

5 ), 0, sin(2π 2
5 ), . . . , 0, sin(2π)

)
∈ R12

and with the definition of the curve length, we have that

L(c) =
∫ 1

0

∣∣c′∣∣g ds =
∫ 1

0

√
gp([c], [c]) ds =

∫ 1

0

√
〈(ϕ ◦ c)′(s), (ϕ ◦ c)′(s)〉 ds

=
∫ 1

0

∣∣(0, sin(0), . . . , 0, sin(2π)
)∣∣

R2n ds =
∫ 1

0

( 5

∑
i=0

sin2( k
5 )
)1/2

ds =

√√√√ 5

∑
i=0

sin2( k
5 )

Using the curve length definition from above, we can define the distance between two points in M.

Definition 7 (Intrinsic distance of points on a manifold). Let (M, g) be a connected Riemannian manifold
and p, q ∈ M. Then we can define the intrinsic distance or geodesic distance between p and q as

dg(p, q) := inf{Lg(c) | c : [0, 1]→ M piecewise smooth, c(0) = p, c(1) = q},

i.e. the length of the shortest curve in M connecting p and q.

The geodesic distance dg indeed fulfills the axioms for a metric (in the sense of metric spaces) [Lee, p.
277], i.e.

• dg(x, y) ≥ 0 (and dg(x, y) = 0⇔ x = y)

• dg(x, y) = dg(y, x)

• dg(x, y) ≤ dg(x, z) + dg(z, y)

3 Geodesics on Riemannian Manifolds

In the Euclidean space, going “straight” from a point p to a point q is very intuitive: It is nothing but
going along the line segment connecting the two end points. In this case, the straight line is also the
shortest path in the manifold connecting these points. A physical intuition of straight would be: “Use
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nothing but the initial velocity!”. Just like a bullet being fired from a gun (when neglecting gravitational
force, wind, etc.), or motorcycle rider who does not turn the handlebars. Roughly speaking, this means
that the velocity vector does not change in any tangential direction but its own. More formally, this is
nothing but saying that the directional derivative of the velocity in its own direction vanishes.

For an example, refer to the Motorcycle clip.

In what follows, we will give an abstract definition which should be thought of as a directional deriva-
tive. First we have to define the notion of a differentiable vector field; this field will associate to every
point of the manifold a tangential vector in a differentiable manner.

Definition 8 (Tangential Vector Field). Given a smooth manifold M, then the map X that assigns a tangent
vector Xp ∈ Tp M for every point p ∈ M is called a differentiable vector field on M, if for every chart ϕ : U →
V ⊂ Rn where p ∈ U, then the coefficients ξ i : U → R:

Xp = ∑ ξ i(p)bϕ
i (p)

are differentiable functions. The set {bϕ
i (p)} is a basis of the tangent space Tp M depending on the coordinate

system derived from the chart.

In what follows we will refer to tangential vector field simply as vector field. The last definition we are
still missing is of the so called Lie bracket.

Definition 9 (Lie Bracket). Given two vector fields X, Y on M, then the Lie bracket is the vector field [X, Y]
which satisfies:

[X, Y]( f ) = X(Y( f ))−Y(X( f ))

where f : M→ R. X( f ) and Y( f ) are the directional derivatives of f in direction X and Y respectively.

Now, we are ready to define the directional derivative of vector fields.

Definition 10 (Riemannian Connection). Let (M, g) be a Riemannian manifold and X, Y be two vector fields.
The Riemannian connection is the map ∇(X, Y) = ∇XY that maps the pair (X, Y) to a third vector field, such
that the following properties hold:

1. ∇X1+X2Y = ∇X1Y +∇X2Y

2. ∇ f XY = f∇XY

3. ∇X(Y1 + Y2) = ∇XY1 +∇XY2

4. ∇X( f Y) = f∇XY +∇X f Y

5. ∇X(g(Y, Z)) = g(∇XY, Z) + g(Y,∇XZ)

6. ∇XY−∇YX− [X, Y] = 0

Theorem 1. Given a Riemannian manifold (M, g), then the Riemannian connection is uniquely determined.

Remark 2. If M is a surface element, i.e. a 2-manifold in R3 with the Euclidean scalar product as its
Riemannian metric, then the Riemannian connection is:

∇XY = DXY− 〈DXY, N〉N (2)

where N is the normal of the surface. This holds only because the manifold (surface) is embedded in R3

and the notion of normal is well defined. In general we cannot utilize this definition as it is not intrinsic.

Finally, we can define the notion of a geodesic.

Definition 11 (Geodesic Curve). An arc length parameterized curve c : I → M is called a geodesic if

∇c′c
′ = 0
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Remark 3. If we consider a curve c : I → M where M is a surface, then the connection given in equation
(2) vanishes whenever the curve’s tangent does not change in any tangential direction.

Remark 4 (Initial Value Problem). Let p ∈ M be a point on a 2-manifold embedded in R3, and let
X ∈ Tp M be a tangent vector based at p. Now, consider the following initial value problem of finding a
smooth curve γ : I → M such that:

∇γ′γ
′ = 0

γ(0) = p

γ′(0) = X

Using the Riemannian connection defined in equation (2), we have that the problem stated above is a
2nd order ODE and thus it has a unique solution for some open interval (−ε, ε).

This initial value problem can be stated in the abstract setting as well, namely, for every point p ∈ M
and a tangent vector X ∈ Tp M with gp(X, X) = 1, then there exists an ε > 0 and a uniquely determined
geodesic γ : (−ε, ε) → M which is arc length parameterized and γ(0) = p and γ′(0) = X. For more
details, refer to corollary 5.18(iii) in [Kuehnel].

Geodesics and Shortest Paths Theorem 4.13 in [Kuehnel] states that a shortest curve between two
points on a manifold is always a geodesic. This is an amazing property that makes geodesics also
interesting for a number of minimization problems.

On the other hand, locally, geodesics are distance minimizers. That is, for two “close” points along a
geodesic γ, say p = γ(t0) and q = γ(t1), then the following holds:

dg(p, q) = Lg(γ|[t0,t1]).

For an example, refer to the Geodesics on a Bretzel clip.

F Example: Sphere On a sphere, geodesics are always parts of great circles, i.e. equator-
like curves. However, in general there are two geodesics connecting two points p, q ∈ S2

(if p = −q, there are infinitely many), as can be seen in figure 8: One that is the shortest
connection and one that is “the rest of the great circle”.

p

q
c1

c2

Figure 8: Two geodesics connecting p and q on a sphere.

F Example: Discrete Planar Curves With the Riemannian metric that we have chosen
above, i.e. just inheriting the scalar product from R2n, the shortest curves in M are equiva-
lent to straight lines in R2n. That means that if the curve c connecting p, q ∈ M just moves
every point of the discrete curve p linearly to the corresponding point of the discrete curve
q, c is a geodesic.
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